S100/Calgranulin-mediated inflammation accelerates left ventricular hypertrophy and aortic valve sclerosis in chronic kidney disease in a receptor for advanced glycation end products-dependent manner.

نویسندگان

  • Ling Yan
  • Liby Mathew
  • Bijoy Chellan
  • Brandon Gardner
  • Judy Earley
  • Tipu S Puri
  • Marion A Hofmann Bowman
چکیده

OBJECTIVE S100A12 and fibroblast growth factor 23 are biomarkers of cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. APPROACH AND RESULTS A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9, and S100A12 was expressed in C57BL/6J mouse (hBAC-S100) to generate a novel humanized mouse model. CKD was induced by ureteral ligation, and hBAC-S100 mice and wild-type mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased fibroblast growth factor 23 in the hearts, left ventricular hypertrophy, diastolic dysfunction, focal cartilaginous metaplasia, and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in wild-type mice with CKD or in hBAC-S100 mice lacking the receptor for advanced glycation end products with CKD, suggesting that the inflammatory milieu mediated by S100/receptor for advanced glycation end products promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including interleukin-6, tumor necrosis factor-α, lipopolysaccarides, or serum from hBAC-S100 mice upregulated fibroblast growth factor 23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. CONCLUSIONS Myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a receptor for advanced glycation end products-dependent manner in a mouse model of CKD. We speculate that fibroblast growth factor 23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate left ventricular hypertrophy and diastolic dysfunction in hBAC-S100 mice with CKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23.

BACKGROUND Cardiovascular disease including left ventricular hypertrophy, diastolic dysfunction and ectopic valvular calcification are common in patients with chronic kidney disease (CKD). Both S100A12 and fibroblast growth factor 23 (FGF23) have been identified as biomarkers of cardiovascular morbidity and mortality in patients with CKD. We tested the hypothesis that human S100/calgranulin wou...

متن کامل

Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress

Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...

متن کامل

S100A12 and the S100/Calgranulins: Emerging Biomarkers for Atherosclerosis and Possibly Therapeutic Targets.

Atherosclerosis is mediated by local and systematic inflammation. The multiligand receptor for advanced glycation end products (RAGE) has been studied in animals and humans and is an important mediator of inflammation and atherosclerosis. This review focuses on S100/calgranulin proteins (S100A8, S100A9, and S100A12) and their receptor RAGE in mediating vascular inflammation. Mice lack the gene ...

متن کامل

Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE) as a significant contributor to the pathogenesis of certain neurodegenerative diseases a...

متن کامل

Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor.

Advanced glycation end product receptors (AGERs) play distinct functional roles in both the toxicity and disposal of advanced glycation end products (AGEs), substances that are linked to diabetes and aging. Overexpression of AGER1 in murine mesangial cells (MCs) (MC-R1) inhibited AGE-induced MAPK1,2 phosphorylation and NF-kappaB activity and also increased AGE degradation. The mechanism of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 34 7  شماره 

صفحات  -

تاریخ انتشار 2014